Simulating Probabilities – The Monty Hall Problem

Psychology vs. Probability

Anyone old enough to remember the Monty Hall problem from the old TV Show Let’s Make a Deal? It’s a classic probability problem – but despite its simplicity, it can be hard to understand what choices to make to maximize your odds of winning.

This is the problem:

You are a contestant on a game show. The host displays three doors. One has the brand new car behind it while behind the other doors have goats behind them. Here’s a beautiful image of all possible options you would have: Continue reading

Microsoft Cognitive Services Vision API in R

Microsoft Cognitive Services Vision API in R


A little while ago I did a brief tutorial of the Google Vision API using RoogleVision created by Mark Edmonson. I couldn’t find anything similar to that in R for the Microsoft Cognitive Services API so I thought I would give it a shot. I whipped this example together quickly to give it a proof-of-concept but I could certainly see myself building an R package to support this (unless someone can point to one – and please do if one exists)!

A quick example, sending this image retrieved the location of the human face and created a caption! Here’s my dog lined up next to his doppelganger:

Continue reading

tropical storms data

Exploratory Data Analysis of Tropical Storms in R

Exploratory Data Analysis of Tropical Storms in R

The disastrous impact of recent hurricanes, Harvey and Irma, generated a large influx of data within the online community. I was curious about the history of hurricanes and tropical storms so I found a data set on data.world and started some basic Exploratory data analysis (EDA).

EDA is crucial to starting any project. Through EDA you can start to identify errors & inconsistencies in your data, find interesting patterns, see correlations and start to develop hypotheses to test. For most people, basic spreadsheets and charts are handy and provide a great place to start. They are an easy-to-use method to manipulate and visualize your data quickly. Data scientists may cringe at the idea of using a graphical user interface (GUI) to kick-off the EDA process but those tools are very effective and efficient when used properly. However, if you’re reading this, you’re probably trying to take EDA to the next level. The best way to learn is to get your hands dirty, let’s get started.

Continue reading

US Immigration Enforcement – Part 1

Trend of US Immigration Enforcement

In the coming months I’ll be digging into the immigration enforcement data posted on data.world. I encourage anyone to take this data and either add to the project or to do something on their own. I will be bringing in external data sources to merge as well (which I did for this first plot).

If you’re only here for a “high-level nugget” of information, the basic thing you can see is:

Things have changed since 1925!

Continue reading

Google Vision API in R – RoogleVision

Using the Google Vision API in R

Utilizing RoogleVision

After doing my post last month on OpenCV and face detection, I started looking into other algorithms used for pattern detection in images. As it turns out, Google has done a phenomenal job with their Vision API. It’s absolutely incredible the amount of information it can spit back to you by simply sending it a picture.

Also, it’s 100% free! I believe that includes 1000 images per month. Amazing!

In this post I’m going to walk you through the absolute basics of accessing the power of the Google Vision API using the RoogleVision package in R. Continue reading