Category Archives: ETL

Building a Data Pipeline in Python – Part 2 of N – Data Exploration

Initial data acquisition and data analysis

In order to get an idea of what our data looks like, we need to look at it! The Jupyter Notebook, embedded below, will show steps to load your data into Python and find some basic statistics to use them to identify potentially issues with new data that arrives.

This process is simply the exploratory step, we will build part of the pipeline in the next step. It’s imporant to have notebooks involved once in a while in order to make sure we know what we’re looking at.

Keep in mind, this is the first look at the data and we’re checking out some very basic testing. These tests will become more robust and meaningful as we continue to build out this pipeline.

Continue reading

ETL – Building a Data Pipeline With Python – Introduction – Part 1 of N

ETL (Extract, Transform, Load) is not always the favorite part of a data scientist’s job but it’s an absolute necessity in the real world. If you don’t understand this process, you will have a basic grasp on it by the time you’re done with these lessons. I will be covering:

  • Data exploration
    • Understanding your data
    • Looking for red flags
    • Utilizing both statistics and data visualization
  • Checking your data for issues
    • Identifying things outside of the “normal” range
    • Deciding what to do with NaN or missing values
    • Discovering data with the wrong data type
  • How to clean and transform your data
    • Utilize the pandas library
    • Utilize pyjanitor
    • Getting data into tidy format
  • Dealing with your database
    • Determining whether or not you actually need a database
    • Choosing the right database
      • Deciding between relational and NoSQL
    • Basic schema design and normalization
    • Using an ORM – SQLAlchemy to insert data
  • Building a data pipeline
    • Separate your ETL into parts
    • Utilize luigi to keep you on track
    • Error montitoring

Continue reading